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Generalized charged static dust spheres in relativity 
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Centro Brasileiro de Pesquisas Fisicas, ZC-82 Rio de Janeiro, B r a d  
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Abstract. A static, bounded, spherically symmetric distribution of dust is considered; the 
constituents of this dust are simultaneously sources of gravitational, electrostatic and 
long-range scalar fields. Two kinds of scalar fields are considered-attractive and repulsive. 
Two classes of exact external solutions corresponding to these two types of fields are 
obtained; these solutions are asymptotically flat and satisfy the continuity conditions at the 
surface of the distribution. The internal solutions depend on two somewhat arbitrary 
functions of the radial coordinate. The solutions tend straightforwardly to all less general 
solutions found in the literature. 

1. Introduction 

Spherically symmetric distributions of electrically charged dust, in static condition, 
were studied by Bonnor (1960); he verified that equilibrium could only be maintained 
when the ratio of the density of charge to the density of matter remained constant: 
cr = f p in his units. Later De and Raychaudhuri (1968) showed that the relation 
c r =  * p  is a consequence of the Einstein-Maxwell equations irrespective of any 
symmetry, provided there is no singularity in the distribution. Very recently Wolk et a1 
(1975) studied a distribution of incoherent dust, the constituents of which were 
supposed to be the sources of gravitational as well as of repulsive long-range scalar 
fields. Using an analysis similar to that of De and Raychaudhuri they found that in static 
systems free of singularity one should also have an identical relation between the 
densities of scalar charge and of matter. 

We now generalize all these results by considering a static distribution of incoherent 
dust, charged both in the electric and in the scalar sense. Our scalar field can be either of 
an attractive or of a repulsive kind; as in Teixeira et a1 (1976) we call a scalar field 
attractive (repulsive) when it produces attraction (repulsion) between scalar charges of 
the same sign, unlike (like) what happens in electrostatics. For definiteness we have 
considered a distribution with spherical symmetry, and obtained the external and 
internal solutions. 

2. Basic equations 

In the Einstein equations (Anderson 1967)$ 

R r = -8 T (  Tr - S rT/2) 

t Present address: Instituto de Fisica UFRJ, Cidade Universitaria, Rio de Janeiro, Brasil 
We use the notations and conventions of this book. 
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we take as the energy-momentum density of our system: 

Tf: = puFu, +E;+ Kf:; (2) 
here p is the mass density of a distribution with velocity U”’, and Ef: and Kf: are the 
energy-momentum densities of an electromagnetic and of a long-range scalar field. 

The tensor Ef: is given by 

4 rE f: = FEE - S f:GFQBJ4, 
where 

F,, = A,;,, - A,;, 

is the electromagnetic field, which satisfies Maxwell’s equations 

(3) 

(4) 

F’”;, = 4 ~ u u  ’, ( 5 )  
U being an electric charge density; subscripted and superscripted semicolons mean 
covariant derivatives. 

The tensor K: is given (Teixeira et a1 1976) by 

4qK:= S;’S;, - Sf:S’”S;,/2, ( 6 )  
where y = +1 when the scalar field S is attractive, and y = -1 for repulsive scalar fields. 
Both kinds of scalar fields satisfy 

si;= -4nys, (7) 
where s is the density of the source of S. 

The contracted Bianchi identities 

2 R f:;, = R ;v 

give for our system 

pu,;,uy = uF,,u”+sS,,. (9) 
In this work we shall be concerned with spherically symmetric static systems; for 

(10) 

such symmetry we use the line element 

ds2 =e2“(dx@)2-e2u dr2-r2 eu-“(d82+sin28 db2), 

R E =  -(7711+2~1/r)e-2u, (11) 

R :  = (12) 
R ;  = R: = (7711/2-a11/2 + Vr/r  - a l / r  - r -2)  e-2a + rm2 

with 77 and a functions of r alone; then the components of the Ricci tensor are 

(13) 
where a subscript 1 means d/dr. All sources p, U and s are functions of r alone, the same 
happening to the fields A, and S, and to the velocity U’, 

A,, = SE@(r), 

u p  = 8: e-”. 

The electromagnetic and scalar energy momentum tensors become 

d iad+ ,  +, - 9  ->, (16) 

(17) 

grEP = @2 -2(?+a)  
v l e  

2 -2u 87rKf:= ySl e diag(+, -, +, +); 
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and the electrostatic and scalar field equations are now 

(r’ e-21al)1 = 4 m ’  eZa-“, 

(r2Sl)l = 4rrysr’ e’”, 

with the Bianchi identity 

pql + u e-“@., + sS1 = 0. 

3. General exterior solutions 

We put p = U = s = 0 in the equations of 0 2 and obtain 

qI1+2q1/r =e-’“@:, (21) 
al l  +3q:/2-a?/2- qlal -2q1/r = e-’“&-2 ys:, 

(qll-a11)/2+(7)1-al)/r+(eR+a - l)/r’=e-’“@;, (23) 

(r’ e-29@l)l = 0. (24) 

<pl = -4r-2 e’“ (25) 

(22) 

From the last equation we get immediately 

where q is a constant of integration. 
The substitution of (25) into (21) gives for q the solution 

e-” =cosh(d+c/r)+(l + 9 ’ / ~ ’ ) ~ / ’  sinh(d +c / r ) ,  (26) 

where c and d are constants of integration; we impose q = 0 at infinity, which implies 
that d = 0. 

The subtraction of (21) from (23) yields the solution 

(f/r)’  sinh-’(g+f/r), (27) e“+” = 

with f and g constants of integration; the imposition of q +a = 0 at infinity demands 
that g = 0. 

Finally (22) gives for S: the solution 

S: = yv’ - c2) / r4;  (28) 
this solution is compatible with (19) which in our exterior region is expressed by 
(r2Sl)l = 0. 

So the exterior solution of our problem, which tends to flatness at infinity is 
(subscript e for exterior) 

goo= exp(2qe) = [cosh c / r + ( l  + q ’ / ~ ’ ) ~ / ’  sinh c/r]-’, 

g,, = -exp(2ae) = -(f/r)4 ~inh-~(f/r)  exp(-2qe), 
(29) 

(30) 

with q, c and f constants to be associated somehow with the gravitational, electric and 
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scalar charges. While the constant q must be real in order to have the usual physical 
meaning in (32), the constants c and f can be real or imaginary, independently. This 
spherically symmetric exterior solution ((29)-(33)) is consistent with more general 
results already obtained by Teixeira et a1 (1976). 

The familiar Reissner-Nordstrom exterior solution: 

goo= 1 -2m/r'+q2/rt2, gr'r, = -goo 9 gee = --rI2, @ = q/r' -1 

is obtained by putting c = f and then performing the radial coordinate transformation 
r' = m +f coth f / r  with m2 = q2 + f 2 ;  and Yilmaz's (1958) one-parameter repulsive 
scalar field solution 

ds2 = e-2dr (dx0)2-e2c'r(dr2+r2 de2+r2 sin28 d+2), S :  = c2/r4 

is obtained by putting q = f = 0. 

4. Interior solutions 

We consider now a static, spherically symmetric distribution of incoherent dust, 
charged both electrostatically and scalarly (long-range, either attractive y = +1 or 
repulsive y = -1); we assume that all distributions p ( r ) ,  cr(r) and s ( r )  are regular. Our 
set of equations is now 

qll +2q1/r = 4 r p  e2a +e-2r, cp.:, 
al l  +3&2 - a:/2 - qlal - 2q1/r = -4rp e2a +e-2r,@: - 2y$, 

(7711-~11)/2+(q1-a1)/r+(e"+fa - l) /r2 = 4 r p  eZa +e-"@:, 

( r 2  e-2"@l)1 = -4rcrr2 e'"-", 
(r2Sl)l=4cTTySr 2 e 2a , 

pql + c e-"@l + sS1 = 0. 

(34) 

(35) 

(36) 

(37) 

(38) 
with the contracted Bianchi identity 

(39) 

The subtraction of (34) from (36) again gives the solution (27); however, in our 
interior system we can only have regularity at the origin when both constants f and g 
vanish in such a way that 

qi+ai=0, (40) 
where the subscript i stands for internal. 

We next add (34) and (33 ,  consider (40) and get the quadratic first-order relation 

q:-e-2rl(P:+ = 0; (41) 

from the system (39) and (41) we get 

@I = -0 e"ql, (42) 

S:  = y ( Q 2 -  1)q:, (43) 

(a2 - 1)s'- y ( p  - Q ~ ) ~  = 0. 

where the function 0 ( r )  is a combination of p ,  cr and s given by 

(44) 
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The interior solution of our system can then be specified by the two functions q ( r )  
and S1 from (42) and (43), and Q ( r ) ;  having chosen these two functions we get 

respectively; next we obtain 

We see from (43) that Q2(r)  must be everywhere greater (less) than unity, for 
attractive (repulsive) scalar fields, and we see that the choice of q ( r )  and Q(r )  are not 
completely arbitrary, since the density of mass p ( r )  in (45) must be positive. Some small 
additional restrictions on q and Q will arise from the continuity conditions on the 
boundary of the sphere. 

Bonnor's (1960) well known electrostatic solutions correspond to the particular case 
QZ = 1 ; his radial coordinate r' is related to our r by r' = r exp( - q). Another particular 
case is that of vanishing density of electric charge, a situation which can be represented 
by Q = 0; then (43) demands that y = -1. Indeed, in the absence of electrostatic 
repulsion a repulsive scalar field is required for balancing the gravitational attraction; 
this particular case was studied by Yilmaz (1958). 

5. Complete solqtions 

In matching the regular interior solutions with the asymptotically flat exterior solutions 
we impose the continuity of the fields goo, g, @, S, and of the radial derivatives dgoo/dr, 
d@/dr, dS/dr on the boundary ro of the sphere. 

The continuity of goo and gw implies, from (29), (30) and (40), that f = O ,  or 
equivalently a, = -77,. Then from (33) we see that for attractive scalar fields ( y  = +1) 
the parameter c must be imaginary, c = ib (b real), and from (29) we note that we must 
have b 2 < q 2  for y = + l .  And we see that for repulsive scalar fields (y=- l )  the 
parameter c is real. So if we define a positive constant m according to 

(48) 
2 2  m = q  -yb2 

we have two different expressions for the exterior g, metric coefficient: 

[cos b/r + (m/ b) sin b/ r]-' (y=+1),  (49) 

[cosh b/r+(m/b) sinh b/r]-2 ( ~ = - 1 ) ;  (50) 
goo = exp(2qe) = 

in both cases y = f 1 we have the exterior quantities 
-2 gw = gee = -eXP(-2qe), 

a l e  = -4r-2 e x p ~ q , ) ,  
S1, = yb/r2.  

The continuity of goo and dg,/dr implies that the internal q i ( r )  used in (42)-(47) 
must satisfy 

qi(ro) = q e ( r O ) ,  qli(ro) = qie(ro), (54) 
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where qe( r )  is that given in (49) or (50). Finally the continuity of d@/dr and of dS/dr on 
the boundary ro both give the same restriction, say from (42) and (52): 

Q(~o)  = q(riqle(ro))-l exp(~e(ro)). (55) 

6. Discussion 

One sees from the asymptotic expressions of (49)-(53) that the parameters m, q and b 
represent, in the weak-field approximation, the mass, the electric charge and the scalar 
char@ of the sphere, respectively. While in the absence of scalar charges one observes 
that 4' = m2 (with a relation between the corresponding densities, u2 = p 2 ) ,  and in the 
absence of electric charge one has b2 = m2 (with the relation s2 = p 2 ) ,  in our general case 
one has m 2 - q 2 +  yb2 = 0, but the relation (44) between the corresponding densities 
involves a somewhat arbitrary function Q ( r ) .  

Also in connection with the relation m 2 = q 2 - y b 2  one should remark that for 
attractive scalar fields ( y  = +1) the parameter m can only be interpreted as a mass 
parameter when b2 < q 2 ;  a classical picture to see the origin of this result has already 
been tried by Teixeira er a1 (1976). 

In the case of vanishing total scalar source (b + 0) the two external metric coeffi- 
cients (49) and (50) approach each other, giving as a limiting case 

ds2=(1+m/r)-2(dx0)2-(1+m/r)2[dr2+r2(dt12+sin28 d+')]; 

this result has already been obtained by Papapetrou (1947), his radial coordinate r' 
being related to our r by r' = r + m. 
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